Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Thermal cycling°ú ½Ãȿ󸮰¡ Glass-Ionomer ¼öº¹ÀçÀÇ ÀÎÀå°­µµ¿¡ ¹ÌÄ¡´Â ¿µÇâ

EFFECT OF THERMALCYCLING AND AGING ON THE TENSILE STRENGTH OF GLASS-IONOMER RESTORATIVE MATERIALS

´ëÇѼҾÆÄ¡°úÇÐȸÁö 1999³â 26±Ç 4È£ p.677 ~ 687
¹éº´ÁÖ, ±è¹®Çö, À̽¿µ, À̽ÂÀÍ, ±èÀç°ï,
¼Ò¼Ó »ó¼¼Á¤º¸
¹éº´ÁÖ (  ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ ¼Ò¾ÆÄ¡°úÇб³½Ç
±è¹®Çö (  ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ ¼Ò¾ÆÄ¡°úÇб³½Ç
À̽¿µ (  ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ ¼Ò¾ÆÄ¡°úÇб³½Ç
À̽ÂÀÍ (  ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ ¼Ò¾ÆÄ¡°úÇб³½Ç
±èÀç°ï (  ) - ÀüºÏ´ëÇб³ Ä¡°ú´ëÇÐ ¼Ò¾ÆÄ¡°úÇб³½Ç

Abstract

º» ¿¬±¸¿¡¼­´Â ±¸°­È¯°æ°ú À¯»çÇÑ ¾×»óÀÇ Á¶°ÇÇÏ¿¡¼­ÀÇ ¿Âµµº¯È­°¡ ±¤ÁßÇÕÇü ±Û·¡½º¾ÆÀÌ¿À³ë¸Ó°è ¼öº¹ÀçÀÇ ÀÎÀå°­µµ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Æò°¡Çϱâ À§ÇØ ´ëÁ¶±ºÀ¸·Î 2Á¾ÀÇ Àç·¡Çü glass ionomer¸¦ ¼±ÅÃÇÏ°í ½ÇÇ豺À¸·Î 2Á¾ÀÇ ±¤ÁßÇÕÇüÀÇ resin-modified glass ionomer¿Í 2Á¾ÀÇ polyacid-modified resin compositeÀ» ¼±ÅÃÇÑ ´ÙÀ½ ¼öÁß¿¡¼­ÀÇ thermal cycling°ú ½Ãȿ󸮸¦ ÇàÇÏ¿´À¸¸ç, ´ÙÀ½°ú °°Àº °á·ÐÀ» ¾ò¾ú´Ù.
1. ±Û·¡½º¾ÆÀÌ¿À³ë¸Ó ¼öº¹ÀçÀÇ ÀÎÀå°­µµ¸¦ ÃøÁ¤ÇÑ °á°ú, polyacid-modified resin composite, resin-modified glass ionomer ±×¸®°í Àç·¡Çü glass ionomer ÀÇ ¼øÀ¸·Î ³ªÅ¸³µ´Ù.
2. ÀÎÀå°­µµ´Â 30ÀÏ°£ÀÇ ½Ãȿ󸮷ΠÁõ°¡µÇ´Â °æÇâÀ» º¸¿´´Ù.
3. Àç·¡Çü glass ionomer ¼öº¹ÀçÀÇ ÀÎÀå°­µµ´Â thermal cycling󸮷ΠÁõ°¡µÇ´Â °æÇâÀ» º¸¿´À¸¸ç, 37¡ÉÀÇ Áõ·ù¼ö Áß¿¡ 1½Ã°£ ħÀûÇÑ ±º°ú 10,000ȸÀÇ thermal cyclingÀ» ºñ±³ÇÑ °á°ú À¯ÀÇÇÑ Â÷À̷μ­ °­µµÀÇ Áõ°¡¸¦ ³ªÅ¸³Â´Ù(P<0.01).
4. thermal cycling±ºÀÇ ÀÎÀå°­µµ´Â DR±ºÀÌ 45.4MPa·Î ÃÖ´ëÄ¡¸¦, FL±ºÀÌ 13.4MPa·Î ÃÖ¼ÒÄ¡¸¦ ³ªÅ¸³ÂÀ¸¸ç, °¢ ±º°£ÀÇ Åë°èÀû À¯ÀǼºÀ» °ËÁõÇÑ °á°ú polyacid-modified resin compositeÀÇ ÀÎÀå°­µµ°¡ ³ª¸ÓÁö ±º°ú À¯ÀÇÇÑ Â÷À̸¦ º¸¿´´Ù(p<0.05).
5. Ư¼º°­µµ´Â DR±ºÀÌ 48.6MPa·Î °¡Àå ³ôÀº °­µµÄ¡¸¦ º¸¿´À¸³ª, Weibull °è¼ö´Â CG±ºÀÌ 8.9·Î °¡Àå ³ôÀº °ªÀ» º¸¿© ½ÃÇèÀç·á Áß¿¡¼­ °¡Àå ÀÛÀº °­µµÀÇ ºÐ»êÀ» ³ªÅ¸³Â´Ù.
This study was performed to evaluate the effect of aging and thermal cycling on the tensile strength of six commercially available glass-ionomer materials: two chemically set glass-ionomer materials (Fuji 11 , Fuji IX), two resin-modified glass-ionomer materials (Fuji 11 LC, Vitremer), and two polyacidmodified composite resins(Compoglass, Dyract). Rectangular tension test specimens were fabricated in a teflon mold giving 5mm in gauge length and 2mm in thickness. All samples were divided in-to 3 groups. Group 1 was immersed in a 37 t distilled water for 1 hour. Group 2 was immersed in a 37t distilled water for 30 days. Group 3 was subjected to 10,000 thermal cycles between 5 t and 55t , and the immersion time in each bath was 15 seconds per cycle. Tensile testing was carried out at a cross-head speed of 0.5mm/min and fracture surfaces were examined with scanning electron microscope.
The results obtained were summarized as follows;
1. The polyacid-modified composite resins were stronger than the resin-modified glass-ionomer materials, which were much stronger than the conventional glass-ionomer materials.
2. Tensile strengths were slightly increased after aging treatments for 30days.
3. Tensile strengths of conventional glass ionomers were significantly increased after thermal cycling treatment(p(O.01).
4. The highest tensile strength value of 45.4MPa was observed in the Dyract group and the lowest value of 13.3MPa was observed in the Fuji II LC group after the thermal cycling test, and the strengths of polyacid-modified composite groups were significantly higher than those of other groups.
5. The highest characteristic strength value of 48.6MPa was obtained in the Dyract group, how-ever the highest Weibull modulus value of 8.9MPa was obtained in the Compoglass group after thermal cycling test.

Å°¿öµå

Glass-ionomer materials;ÀÎÀå°­µµ;Thermal cycling;Glass-ionomer materials;Tensile strength;Thermal cycling

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI